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1.0 Overview

Since the Contract start in October 1986, progress was made in
several areas. In this report we summarize our progress and report
on work in the last phase of the Contract. Our most recent work
concerns the application of Gabor Wavelets to feature extraction and
pattern recognition for postboost or midcourse phase ballisiic missile
defense. From the point of view of an interceptor, a target changes
in scale rapidly during the last seconds before impact. Pattern
recognition during these last seconds is needed for terminal guidance
of the interceptor. Effective pattern recognition across a large range
of scale size requires scale invariant feature extraction. This
requirement motivates a wavelet representation of the input scene.
An infinite number of possible wavelet representations may be
considered, but Gabor wavelets are the obvious candidates for optical
information processing. The subject of wavelet representations is
covered in Section 3.0. A summary of progress made in other areas
is given below for each annual reporting period of the Contract.

1.1 Period from October 1986 to Dec 1988

March 1988 Annual report: Precision metrics on a ballistic target
are obtained by following the target over a period of time, with
either angle measurements, range measurements or both angles and
range. These measurements are processed with a batch least-
squares estimator to obtain the refined metric information. In a
multi-target environment, targets A and B may fall in the same
resolution cell of the framing camera or pulsed radar. Once this
happens, the identities of the two targets are ambiguous. How do we
assign earlier measurements to a target after the two targets cross in
angle or range? If we attempt to sort out this confusion by trying all
possible assignments of the measurements, we face a very large
computational load, because the number of ways to combine
measurements from two or more targets grows very rapidly with the
number of measurements used in the batch least-squares estimator.
This data association problem occurs in its simplest form as frame-
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to-frame correlation: the pairing up of target blips appearing on
consecutive image frames. 1 For
3¢ W
A related problem is encountered in matching stereo pairs for 0
machine vision, where it is called the "correspondance problem." A .

possible solution to the correspondance problem proposed by

Professor FEric Schwartz of NYU was studied because it lends itself to
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an optical implementation. Schwartz proposes that disparity
between stereo pairs might be extracted automatically by cepstral
processing. The cepstrum was proposed by J. W. Tukey for detection
of echos in signals. Since one of the stereo pairs may be regarded as
the "echo” of the other, where the echo delay is the stereo disparity,
cepstral processing also applies to the problem of finding
corresponding features in stereo pairs, and extracting the stereo
disparity to find the range of a feature located in both stereo pairs.

We also studied the computational complexity of the Neocognitron.

The Neocognitron is a neural network developed by Fukushima and
his colleagues (K. Fukushima, "Neocognitron: A self-organizing neural
network model for a mechanism of pattern recognition unaffected by
a shift in position,” Biological Cybernetics, vol. 36, pp 193-202, 1980).
The self-organizing characteristic of the Neocognitron refers to its
ability to group input scenes into categories without a teacher
identifying the categories during training. The mechanism behind
this "learning without a teacher,” is known as "competitive learning.”
Optical processing does not lend itself to implementing competitive
learning. A hybrid system inspired by the Neocognitron is now being
investigated by Dr. T. H. Chao at the Jet Propulsion Laboratory in
Pasadena CA. An optical correlator performs the feed-forward action
of the Neocognitron, and a digital computer to carries out the
learning mechanism and changes the filters in the optical correlator.
Our work in collaboration with Dr. T. H. Chao has been supported by
the Contract since June 1990 (publications 4, 5, 6 and 7 listed in
Section 1.7).

Since SDI sensors must operate in a nuclear disturbed environment
with striated brightness variations in the foreground or background,
automatic compensation within the photosensitive detector array for
local light level is important. This concern motivates our
investigation of a push-pull mechanism for adaptive spatial
resolution and image contrast developed by Dr. M. H. Brill. We
performed computer simulations on the push-pull mechanism, and
confirmed its adaptive spatial resolution and adaptive image contrast
properties.

1.2 Period from Jan 1988 to Dec 1988
December 1988 Annual Report: We continued our work on the

adaptive photosensor array model and the correspondance problem
in stereo vision. We generated three publications on the adaptive
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photosensor array model (publications 1-3 listed below in Section
1.7).

1.3 Period from Dec 1988 to Jan 1989
Report dated Jan 1989: progress in several areas are covered.

1) We continued work on the adaptive photosensor array and
looked into hardware implementations,

2) We performed lengthy simulations of the performance of several
multi-target tracking algorithms that lend themselves to optical
processing. We investigated the well-known Hough transform
method, as well as novel methods we devised to improve
performance over the Hough transform. These novel methods are
the "isometric projection" method and the "3-D track search" method.
The weakness of the Hough transform in multi-target tracking is that
the time sequencing of the observations along a trajectory is lost.
This is a considerable disadvantage for multi-target tracking, because
targets that do not simultaneously occupy nearby points in space are
lumped together in the Hough transformation. This lumping of
events (that are distinguishable if the temporal sequencing is taken
into account) makes the multi-target problem much worse than it
really is. Using a Relative Operating Characteristic (ROC) formalism to
rate the three methods, we found the isometric projection method
and the 3-D track search method provide significantly better
performance than the Hough transform.

3) Neural network receptive fields for uniform weighting of an input
field were investigated as part of our continuing work on the
Neocognitron. In the Neocognitron, shift invariant pattern
recognition is sought by massive spatial replication of the feature
detectors. However, unless the receptive fields of the feature
detectors are overlapped very carefully, the output of the
Neocognitron will be sensitive to a shift of the input pattern. We
investigated this problem for 1-D and 2-D input windows, and
devised a solution to the problem by appropriately shaping the
receptive fields.

4) A scanning sensor may be required to cover the large field-of-
views encountered in Ballistic Missile Defense (BMD). Such a
scanning sensor generally uses a pushbroom scan of a linear array
detector to sweep out a 2-D field-of-view over each frame period.
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Examination of this scanning scheme shows that it does not satisfy
the Nyquist sampling theorem. We show how to satisfy the Nyquist
sampling criterion with a scanning linear array detector by
staggering the detector elements in the array.

S) Animal vision systems frequently use hexagonal sampling
patterns instead of the square sampling patterns generally in use in
electronic cameras. We derive a sampling theorem for hexagonal
sampling and show that hexagonal sampling is slightly more efficient
than square sampling.

1.4 Funding hiatus Jan 1989 to June 1990 (no reports generated).

1.5 Period from June 1990 to December 1991

Report dated June 1992: With the resumption of funding, we began
to work closely with T. H. Chao at the Jet Propulsion Laboratory in
Pasadena California. Dr. Chao is funded to develop an optical neural
network for SDI target/decoy discrimination. We worked in support
of this goal by:

1) helping to structure the architecture of the optical neural
network,

2) performing simulations of target and decoy images for
development and testing of the optical neural network, and

3) developing a mathematical basis for simulating optical images of
objects modelled with constructive solid geometry.

We reported on this work in a poster paper at the Gordon conference
on Coherent Optics and Holography, Plymouth State College, NH, June
1991, and at the July 1991 SPIE meeting in San Diego CA
(publications 4-5 in Section 1.7 below).

1.6 Period from Jan 1991 to Sept 1992

Final Report: during 1992, we concentrated on improving the
architecture of the optical neural network under development at JPL
by Dr. T. H. Chao. This optical neural network uses an optical
correlator for feature extraction. Since the inspiration for the neural
network architecture is the Neocognitron of Fukushima, we originally
copied the feature detectors used in some of Fukushima's papers for

El/November 3, 1992/12:30 PM S




the first stage of feature extraction. Fukushima designed the
Neocognitron for recognition of handwritten alphanumeric
characters. Consequently, at the first stage of feature extraction, he
was able to use line segments at different orientations to characterize
the individual pen strokes in alphanumeric characters. However, our
application to SDI target/decoy discrimination deals with continuous-
tone images, not line figures. We could force the continuous-tone
input images to be line figures by edge-enhancement, but this would
throw away shading information. Since shading information can be
used to infer shape, it seems best to preserve it. We conclude that
the line segment features used successfully by Fukushima are not
appropriate for our application.

We seek general features, so that relevant image information is not
lost in the initial stage of processing. The Gabor wavelets are a
natural choice, because they extract enough information to accurately
reproduce the input, and they provide a uniform set of features
across a wide range of scales. Section 2.0 discusses the BMD problem
and motivates the application of wavelets to the target/decoy
discrimination problem. Section 3.0 provides more information on
wavelet theory for feature extraction.

1.7 Publications And Presentations

1) M. H. Brill, D. Bergeron and W. W, Stoner, "Retinal Model with
Adaptive Contrast and Resolution,” Applied Optics, pp. 4993-4998, 1
Dec 1987.

2) M. H. Brill, D. Bergeron and W. W. Stoner, Trichromatic Retinal
Model with Adaptive Contrast Sensitivity and Resolution,” talk given
at the Annual Optical Society of America Meeting, Rochester, NY, 22
Oct 87.

3) Michael H. Brill, Doreen W. Bergeron and William W. Stoner, "A
Model Retina with Push-Pull Cooperative Receptors Providing
Adaptive Contrast Sensitivity and Resolution,” pp. 101-106 of the
DARPA Neural Network Study, issued 18 July 1988.

4) Tein-Hsin Chao, H. Langenbacher, Sam Rosenzweig, and W. W,

Stoner, "Radar Discrimination with an Optical Neural Network
(RADONN)," poster paper presented at the Gordon Research
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Conference on Holography and Information Processing, 17-21 June
1991, Plymouth State College, Plymouth NH.

5) Tien-Hsin Chao and William W. Stoner, "Optical Implementation
of Neocognitron and its applications to radar signature
discrimination," Proceedings of SPIE Vol. 1558, Wave Propagation
and scattering in varied media II, pp. 505-517, July, 1991.

6) Tien-Hsin Chao, William J. Miceli, and William W. Stoner, "Optical
Implementation of a shift-invariant Neocognitron," Proceedings of
SPIE Vol. 1703, in press. Presented at SPIE meeting, San Diego CA,
July, 1992.

7) Tien-Hsin Chao and William W. Stoner, "Optical implementation
of a feature-based neural network with application to automatic
target recognition,” accepted for publication by Applied Optics special
issue on optical implementation of neural networks, edited by D.
Psaltis and K. Wagner (to appear in March, 1993).
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2.0 The SDI Decoy Discrimination Problem

In this section, an overview of the quintessential SDI problem of
ballistic missile defense is described in terms of the four phases of
payload delivery. The use of decoys in the mid-course phase is then
discussed and an example of the magnitude of the mid-course
defense problem is presented. Finally, aspects of the mid-course
decoy discrimination problem pertaining to imaging sensors are
presented.

2.1 The Ballistic Missile Defense Problem

The delivery of a weapon payload by an intercontinental ballistic
missile (ICBM) can be divided into four phases: boost, post-boost,
mid-course, and reentry. All phases offer opportunities for
defensive action, however, the approach and required technology
vary considerably for each phase.

The boost phase begins at launch and ends approximately three to
six minutes later with the termination of thrust at an altitude of 200
to 300 km. By the end of the boost phase, the lift vehicle has given
the payload sufficient velocity to reach the target. Ballistic missile
defense (BMD) during the boost phase relies on infrared (IR)
emission from the rocket plume as the most prominent observable to
use for the defensive system. Boost-phase BMD offers high leverage
because of the high value of the target, however, the time available
for target acquisition, targeting, and destruction is relatively short.
Furthermore, the development of fast burn boosters may potentially
reduce the boost phase to approximately one minute.

Following the boost phase, the elements of the payload are separated
from the lift vehicle and fall in ballistic trajectories until impact. In
multiple, independently targeted reentry vehicle (MIRV) systems,
small velocity increments are given to each reentry vehicle (RV) to
direct them towards individual targets. During this post-boost phase,
a missile stage known as the post-boost vehicle or bus is utilized to
deploy the RVs along with defenses such as decoys or other
penetration aids. At preprogrammed positions and velocities, the
bus releases single RVs and/or multiple decoys. Currently, from 4 to
10 RVs per missile can be lifted with the bulk of the Russian land-
based strategic ballistic missiles which consists of SS-17, SS-18, and
SS-19 ICBMs.
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The post-boost phase lasts approximately 5 minutes and the
observables are much weaker than in the boost phase. Three
candidate sensor technologies are apparent for post-boost defense,
microwave radar, laser radar, and passive thermal detection. Rapid
post-boost defense is highly desirable because the number of
potential targets to be tracked becomes considerably greater as the
RVs and decoys are deployed.

Following the boost and post-boost phases, surviving elements of the
offense enter the mid-course phase. For an ICBM or SLBM, the mid-
coarse phase is the longest of the trajectory phases (approximately
20 minutes for intercontinental ranges). Throughout the mid-course
phase, all RVs and decoys from a given missile, as well as remnants
of the bus and booster, move along adjacent ballistic trajectories
under the influence of gravity. Mid-course countermeasures to BMD
are made easier by the lack of atmosphere which allows lightweight
decoys to travel in the same trajectories as the heavy RVs. The
principal problem to be confronted in mid-course BMD is the
discrimination of RVs from decoys in a heavy traffic environment.
These decoys may be close replicas of the RVs or they may be
simpler traffic decoys that are deployed in large numbers to saturate
the defensive sensors. The problem of discriminating these decoys
from the RVs provides the motivation for this report and is discussed
further in Sections 2.2 and 23.

The reentry phase begins when the threat cloud begins to enter the
earth's atmosphere. During reentry, the difficult discrimination
problems ussociated with mid-course defense disappear or are
greatly reduced. Changes in the trajectories of the lightweight
decoys make them increasingly easy to discriminate from RVs. The
optical signature of reentering bodies is also increased due to
frictional heating. These tracking and discrimination opportunities
are, however, largely offset by the short time available (less than 60
seconds) for terminal defense.

2.2 Decoys and the Mid-Course BMD Problem

The use of decoys and penetration aids in the mid-course phase
offers an effective BMD countermeasure for the offense. This
advantage is partially offset by the relatively long time the defense
has to establish trajectories and perform discrimination. It is well
know that the mid-course BMD problem is critically dependent on
the success of boost-phase and post-boost defense. A simple
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example servers to illustrate the magnitude of the mid-course BMD
problem in terms of the number of objects to be acquired, tracked,
discriminated, and destroyed.

Preliminary designs suggest that effective replica decoys, having the
same shape and size of an RV, can be constructed with a mass of 1-2
kg. An RV with a 200-kt warhead weighs approximately 200 kg,
therefore, 100 to 200 decoys can be deployed at the cost of
offloading a single RV in a MIRV system. Consider a typical booster
with a payload capacity of 4000 kg. Using 2-kg decoys, a single
booster can potentially deliver 10 RVs and 1000 decoys into the
mid-course battle. If the boost and post-boost defenses allow the
payloads of only 100 missiles to survive, the mid-course defense
system can be faced with the problem of acquiring, tracking, and
discriminating 1000 RVs interswersed among 100,000 decoys. All
this plus the destruction of the RVs must be performed in less than
one-half hour. If the boost and post-boost defenses are one tenth as
effective, mid-course defense can be faced with the massive problem
of destroying 10,000 RVs interspersed among 1,000,000 decoys. The
magnitude of the task to be performed by mid-course defense is thus
critically dependent on the success of boost and post-boost defense.

2.3 The Decoy Discrimination Problem

It is unlikely that observation of boost-phase deployment can
provide high-confidence discrimination between RVs and decoys,
therefore, the defensive system must acquire information during the
mid-course phase that allows discrimination. The offensive strategy
is to minimize or mask the signatures available to perform this
discrimination. Characteristics available for discrimination fall into
two categories: (1) intrinsic characteristics, such as mass and the
presence of fissile materials, high explosives, electronics, etc.; and (2)
extrinsic characteristics, such as size, shape, surface temperature, and
surface emissivity.

Intrinsic characteristics are difficult or impossible to ascertain.
Without thrust and drag, RVs and decoys move only under the
influence of gravity, therefore, it is impossible to discriminate by
mass through metric tracking. Interactive perturbing techniques
that deliver an impulsive force on the objects in the threat cloud are
required for discrimination based on mass. Detecting the presence of
fissile materials or explosives requires a highly directive, penetrating
sensor capable of discrimination based on nuclear or chemical
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signatures. Flectronics may be detectable by electromagnetic
emissions, however, jamming and the use of replica electronics on
the decoys reduces the utility of electromagnetic emissions for
discrimination.

Extrinsic characteristics offer signatures for discrimination that can
be obtained by direct observation with imaging or spectroscopic
sensors. In this report, we focus on the problem of performing
imagery-based decoy discrimination. Passive imaging sensors such
as long-wavelength infrared (LWIR) and active imaging sensors such
as microwave radar and laser radar are the most likely candidates
for detection based on extrinsic characteristics.

Decoys for the exoatmospheric mid-course phase are typically
lightweight objects inflated or erected in space. Some decoys may
also be designed to function into the early part of the reentry phase,
therefore, they will require heavier designs in order to duplicate the
aerodynamic properties of real RVs. Ideally the decoys would have
size, shape, and surface characteristics matching those of an RV. In
practice, this is not possible. To provide decoys that are compact to
store in the bus, easy to deploy, and lightweight limits the accuracy
to which a decoy can match the characteristics of an RV.

The characteristics of the decoy are selected by the offense to
minimize the difference in signature between a decoy and an RV for
a given sensor or suite of sensors. These differences must be fully
exploited by the defensive system. The problem of discriminating
these decoys from the RVs using LWIR or radar imagery requires
advanced techniques and algorithms for processing this imagery. In
Section 3.0 of this report, we present a technology that is directly
relevant to this particularly challenging problem.

3.0 Wavelet Multiresolution Analysis for Imagery-Based
Decoy Discrimination

The basic problem of imagery-based decoy discrimination falls in the
area of pattern recognition and object classification. This area has
evolved considerably over the past 20 years. During that time, much
progress has been made in the development of approaches for
situations in which image formation conditions, such as distance,
orientation, background, and illumination can be carefully controlled.
The problem of decoy discrimination based on extrinsic
characteristics, such as size and shape, relies on obtaining imagery
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using either passive or active sensors under conditions which do not
allow such careful control of the imaging process. Fortunately, the
range of conditions for a particular sensor can be predicted quite
well prior to the development of the object classification algorithm.

One critical aspect of the image-based decoy discrimination problem
is that of addressing differences in orientation and spatial scale of
objects in the imagery. Because of these factors, techniques for the
extraction and representation of object features required for object
classification must appropriately designed. In this section, we
present feature-extraction and image-representation techniques that
are potentially significance for the problem of imagery-based decoy
discrimination. In Section 3.1, we present an overview of joint
spatial/spatial-frequency representations as they apply to feature
extraction. This overview also provides context for the discussion of
wavelets. In Section 3.2, the the subject of image resolution
pyramids and subband coding is presented as an introduction to the
concept of multiresolution representations. Finally, in Section 3.3,
the subject of wavelets and wavelet multiresolution analysis is
presented. Wavelet-based techniques are seen to offer potential
solutions to problems associated with differences in orientation and
spatial scale.

3.1 Joint Spatial/Spatial-Frequency Representations

One approach to the discrimination of decoys from RVs in imagery
requires the extraction of object features in order to perform object
classification. The use of both spatial information and spatial-
frequency information in a unified manner provides a considerable
advantage in feature-based object classification. Joint
spatial/spatial-frequency methods are based on image
representations that give the spatial frequency content in localized
regions in the spatial domain. These methods overcome many of the
shortcomings of traditional Fourier transform methods. They can
also provide balanced resolution in both domains and are consistent
with known characteristics of the human visual system,

In this section, we present an overview of some of the classical joint
spatial/spatial-frequency representations that have utility as feature
measures. These representations we present are (1) the short-time
Fourier transform, (2) the Gabor representation, and (3) the Wigner
distribution. The presentation of these methods also provides
context for the wavelet material presented in Section 3.3.
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3.1.1 The Short-Time Fourier Transform and the Spectrogram

The one-dimensional widowed or short-time Fourier transform
(STFT) has been used extensively in the analysis of temporal signals.
For temporal signals, the STFT produces a two-dimensional time-
frequency representation. This concept is easily extended to the
spatial image domain to yield a four-dimensional spatial/spatial
frequency representation. This result, known as the finite-support
windowed Fourier transform, can be written in continuous variables
as:

Fe,y =] [~ flay) gx—x,y—y) e dxdy

where f(x,y) is the spatial image data and g(x-x',y-y) is a window
function centered at position(x',y').

The spectrogram, defined as the squared magnitude of F(x',y,u,v),
has been used by Bajcsy and Lieberman [1] as a texture feature
measure and by Pentland [2] for estimating fractal dimension.

3.1.2 The Gabor Representation

The complex, two-dimensional Gabor functions have the general
form:

h(x,y)=g(x',y" )-exp[2mi(Ux + Vy)]

where (x',y )= (xcos¢+ ysin¢,—xsin¢ + ycos¢) are rotated coordinates and
where

(1 Y 1 (x AP+
g(x,y)—(zmloz) exp[ e |

This function can be thought of as a complex sinusoidal grating
modulated by a two-dimensional Gaussian function with aspect ratio
A, scale parameter o, and major axis oriented at angle ¢ from the x-
axis. If A=1, then ¢ need not be specified since g(x,y) is circularly
symmetric. The spatial frequency response of the Gabor function is
Hu,v)= cxp{—anoz[(u' ~U YA +_(v-V )2]}

where (u',v)=(ucos¢ +vsing,—-usinp +vcos¢) and (U',V') is a similar
rotation of center frequency (U,V). Thus, H(u,v) is a bandpass
Gaussian with minor axis oriented at an angle ¢ from the u-axis,

aspect ratio 1/4, radial center frequency F=+U?+V? (measured in
cycles/image), and orientation #=tan™(V/U) measured from the u-
axis.
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Any finite-dimensional function can be expressed as a weighted sum
of appropriately shifted Gabor functions. This sum is known as the
Gabor representation. If f(x,y) is the spatial image data, then it can

be represented with the sum:
fanN=3 Y ¥ Y B.umex-x,.y-y)-exp{2mU, (x-x)+V,3-3)]}

F=—06 S0 MT o0 gT—00

where the sequences of shifts {x,} and {y,} and modulation
frequencies {U,} and {v,} have constant spacings X,Y,U,andV
satisfying XU =YV =1. The resulting grid of shifts and frequencies
(four-dimensional in this case) is known as the Gabor lattice. The
expansion coefficients {B,.,.} form a complete representation of f(x,y)
since f(x,y) can be exactly reconstructed from the coefficients.

Recently, Porat and Zeevi [3] have proposed a generalized Gabor
representation for use in machine vision. Clark et. al. [4] have used a
set of Gabor filters to investigate texture segmentation.

3.1.3 The Theory of Time-Frequency Distributions and the Wigner
Distribution

The concept of a mathematical representation in the form of a joint
distribution function of time and frequency was motivated by the
need for a rigorous mathematical analysis and clarification of the
concept of time/frequency analysis. Beginning with the classical
works of Gabor [5], Ville [6] and Page [7], the mathematically rigorous
study of time-varying spectra was developed. The basic concept is to
devise a joint distribution function of time and frequency that
describes the energy density of a signal simultaneously in the time
and frequency domain in a manner similar to the STFT.

There are many (in fact infinitely many) different possible time
frequency distributions. The problem is to find a distribution that
gives results consistent with several intuitive criteria. Different
distribution arise from applying different criteria. The general form
of the time-frequency distribution [8] is

1 T wy. w —1(vErww~vis
P(t,w) = yye j j j z(u + -2—)2 (u - ~2—)¢(v,w)e ( d)dudvdw

where ¢(v,w) is an arbitrary kernel function and :z(r) is the analytic
signal associated with the real signal to be analyzed, f(). The
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analytic signal is calculated, using the quadrature function produced
by the Hilbert transform, as

f(@)=s@)+iH[ (D))

where H[s] denotes the Hilbert transform defined as

H{ Ol = % P] g(_éz £

and where P indicates that the Cauchy principal value of the integral
is to be taken.

Different distributions are obtained for different kernel functions
¢(v,w). The choice of kernel function can provide behavior that
satisfies some of the intuitive criteria, although no distribution has
yet been found that satisfies all of the proposed criteria. The
simplest, and currently most common, distribution is the Wigner (or
Wigner-Ville) distribution (WD) [8,9] given by the kernel ¢(v,w)=1.
Carrying out the integration with respect to vandw, the Wigner
distribution W, (r,w) of the function f(r) can be written as

1 7 u) . uY _;
W (1t,0)=— T+— T—— le”"™du.
s (1.0) 27:;[_2( 2)2( 2)

The WD has the property that, for each time-shift value 7, the
frequency direction centroid is the derivative of phase
(instantaneous frequency) of the analytic signal. The principal
advantage of the WD over the STFT is that the WD gives better
performance on non-stationary functions. The WD, however, has the
disadvantage of cross-product interference. The Choi-Williams
distribution [10] represents a potential advantage with regard to the
problem of cross-product interference.

The Wigner distribution was originally suggested to characterize the
quantum-mechanical duality between the position and momentum of
a particle [9]. Later, the WD was used by ]J. Ville for signal analysis
[6], hence the frequent reference as the Wigner-Ville distribution in
the signal processing literature. An excellent series of articles [11,
12, 13] have been published on the WD that presents the properties
of the WD as well as examples of the WD applied to functions of one
variable. The one-dimensional WD has been applied in a number of
areas including speech analysis and optics. The use of the WD for 2-
D and 3-D image processing was first advanced by Jacobson and
Wechsler [14,15]. In the case of two-dimensional image data, the WD
of the continuous image f(x,y)is defined as
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W,(X,y,u,v) = j J‘R[(x,y’a’p). e'i(m'ﬁv)dadﬁ

where R,(x,y,a,ﬁ)=f(x+%,y+§)f°(x—‘—;-,y—g-). In this case, the

extension to an analytic function is not performed.

The two-dimensional WD has a property that is of particular interest
in image processing, namely, it is strictly a real-valued function. This
property implies that the WD lacks the explicit phase component that
is present in the STFT or Fourier transform. Nonetheless, an image
can be completely recovered (to within a minus sign) from its Wigner
distributdon. This indicates that phase information is implicit in the
WD. Discrete computational approximations to the WD have been
defined by Reed and Wechsler [16].

3.2 Image Resolution Pyramids and Subband Coding

Gaussian Laplacian Transmitted Laplacian Reconstructed

Pyramid Pyramid Quantization Pyramid Gaussian Pyramid

G + ~
° bex L e [, por PR

Original Reconstructed
Image Image
+
Gy o> L —O—| 1, . R4
G2‘ :® > L2 >[§ .y T—Z )’g—k R2
+
O————>[1 ~—>[]
G, Ls i Rs

Figure 1. Block diagram of the Laplacian Pyramid of Burt and
Adelson
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Equal-Band Structure

I._{ Soit & — Merge |_|
Split . Merge
X(n) — Split - Merge X(n)

Octave-Band Structure
Figure 2. Block diagram of two commonly used subband structures
for one-dimensional data.

B ¥oln)

X(n

o(n)

i

_ @ X
Cyl(n) y,(n) B m

Analysis Synthesis

[mmooo]

‘F. LPF Subband image

@—l—> J Detail image

| Rows | Columns

Figure 3. Block daigram of the two-band subband coder for one-
dimensional data (top) and the seperable extension to two-
dimensional data (bottom).

3.3 Wavelets and Multiresolution Analysis

Advances in signal and image processing have recently been brought
about by the discovery of compactly supported wavelets and the
theory of wavelet multiresolution analysis. The application of
wavelets as analysis filters for feature extraction is similar to the
application of the spatial/spatial frequency representations
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described in Section 3.1. However, wavelets offer potential
advantages over the more classical approaches by providing an
orthonomal bases that represents an image in terms of spatial scale
rather than spatial frequency. Furthermore, the recent development
of families of orthonormal wavelets fits within the framework of
multiresolution analysis. Multiresolution analysis offers a rigorous
means to study the decomposition of images into a hierarchy of
resolution scales similar to the resolution pyramids and subband
coding presented in Section 3.2. Wavelet multiresolution analysis
may provide an elegant means to perform object recognition for
porblems in which the objects of interest are imaged at greatly
varying distances, such as in mid-course decoy discrimination.

3.3.1 Wavelets

Wavelets are families of functions generated from a single function,
known as the mother wavelet, through translations and dilations.

ab — ~_1_ (.x - b)
v(x) Ja 14 P
The mother wavelet y is generally required to satisfy the condition

Jw(x)dx=0 and to decay faster than ﬁ as x5 te., Given these
X!

conditions, the function y(x) will have some oscillations and some

degree of iocalization. Through translation by » and dilation by a,
the wavelet family for a given function w(x) can range over a

continuum of scales and cover the real line.

3.3.2 The Wavelet Transform

An appropriate family of wavelets can be used for the purpose of
function decomposition and representation. The wavelet transform
is the mechanism by which an arbitrary function f is decomposed
and represented as a superposition of wavelets. Such a
representation decomposes f into a range of components having
different scales. The representation is fundamentally defined by
writing the function f as integrals over a and b of y*’with
appropriate weighting coefficients. In practice, however, f is
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represented by a superposition of a discrete subset of y**. This
discretization is usually written as a=a; and b=nba; with mneZ
and a,>1.,b,>0. The wavelet representation of f is then written as

f) = € [ F1Wna(x)

-m/2

with v, .(x) = y* "% (x) = a;""y(a;"x ~ nb,).
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